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MINIMIZATION ON STOCHASTIC MATROIDS

by,
Michael P. Bailey

Naval Postgraduate School
Monterey, CA 93943-5000

Abstract

This work gives a methodology for analyzing matroids with random element

weights, with emphasis placed on independent, exponentially distributed element

weights. The minimum weight basic element in such a structure is shown to be an

absorbing state in a Markov chain, vhile the distribution of weight of the minimum

weight element is shown to be of phase-type. We then present two sided bounds for

matriods with NBUE distributed weights, as well as for weights with bounded

positive hazard rates. We illustrate our method using the transversal matroid to

solve stochastic assignment problems.

KEY WORDS: stochastic matriod, stochastic spanning tree, NBUE distributions
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1. INTRODUCTION

M!troid theory has its origins in the recognition by Whitney [19351 that some

algebraic systems shared several properties with linear independence systems.

These systems, called matroid independence systems, were shown by Edmonds

[19711 to have a close relationship to the greedy algorithm for linear objective

functions. The minimum weight spanning tree, the maximum weight transversal,

and the fractional knapsack problem are three of the well known combinatorial

optimization problems with matroid structures. This paper treats stochastic

versions of these problems where element weights are independent, exponentially

distributed random variables. We also establish bounds on the expected objective

function value of the optimal basic element for new-better-than-used (NBUE)

weights, and for weights with positive bounded hazard rates.

There exists some literature on the subject of randomly weighted minimum

weight spanning trees, where the weights are i.i.d. exponentials. In Freize [1985], the

minimum weight spanning tree on complete graphs with i.i.d. arc weights was

considered. It was shown that the weight of the spanning tree approaches a constant

as the number of nodes increases.

Mamer and Jain [19881 provided bounding arguments for spanning trees in

networks using the so-called exodic spanning tree. Corea [1989], and Weiss [1986]

indicate how bounding can be done on shortest path systems using phase-type

distributions. We develop bounds for matriod minimizations with NBUE weights,

where the required phase-type distribution is the one we develop in this paper.

Kulkarni [19881 gave a method for finding the distribution of the weight of the

minimum spanning tree in an arbitrary network with independent, exponentially
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distributed weights. He provided methods for finding a variety o; measures of

performance of the spanning tree based on properties of a constructed Markov

process. The methodology in the current paper extends the work done by Kulkarni

to general matroid structures.

2. COMBINATORIAL UNDERPINNINGS

In this section, we briefly discuss some combinatorial properties of matroids

given in standard references such as Lawler [1976]. We then give several results

which are essential to our discussion of matroids with random weights.

Let E be a finite set of objects such as vectors, nodes, or arcs. M, is a set of subsets

of E with the following two properties:

2.1) Ye MandX zY, thenXE M

2.2) {X c A: X e _M: there exists no xE A such that X {x} u e Jc

is an equicardinal set for every subset A of E.

Property 2.1 says every subset of a set in M4 is in -a, thus M1! is called sinplical.

Property 2.2 dictates that every maximal feasible subset of a set A contains the same

number of elements for every A C E. We will denote the set of matximal elements

in 3t as , called the basis of "M and will call members of 3fkf basic elements. We

will consistently use n to denote the cardinalitv of a basic element.

Properties 2.1 and 2.2 combine to guarantee that we can begin with the empty set

0, and construct anv set in M by making n selections from the set E. We will

perform this construction of a basic element by greedy minimization.

Let v be a nonnegative weight function on the set E, v: E -- 9 *. The linear

objective function co on elements of M is given by

3



C,(x) = Vx)
xeX

for each X E M.f. For the time being, we will ignore the possibility of sets of equal

weights. In the sequel, the weight of each element of E will be an absolutely

continuous random variable, so that equally weighted strings occurr with

probability zero. The notion of greediness is formalized by the following algorithm:

0. initialize: X = 0, co = 0
1 . x -- arg min y: xV,y, M v(y)

2. w w + v(x)

3. X -Xux

4. if X L OM then go to step 1

5. stop

Figure 2.1. The Greedy Algorithm

Verbally, the greedy algorithm begins with the empty set X = 0 and at each stage

selects the element x E E-X with smallest weight, subject to the constraint that X U

{x} is in -it Let XG be the basic element constructed by the greedy algorithm, XC =

{x',x" ,...,xc} where xc is the element selected at the ith opportunity. Let

X6 = {x',x',...,xc be the set of the first i greedy selections. Note that the terminal

value of w is equal to w(Xc), the linear objective function value of XG. The critical

connection between the greedy algorithm and matroid structures is given by the

following theorem, directly adapted from results of Edmonds.

Theorem 2.1. Let o be a linear objective function for an arbitrary nonnegative

weight function v, then X6' = arg miny o(Y) if and only if M is a matroid.
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Proof: See Lawler Section 8.3, replacing maximization with minimization

throughout.

As will become apparent, we will need to modify the objective function and

greedy algorithm in order to handle stochastic element weights. Let us define an

alternate objective function 0Od, which we will call the discounted linear objective

function, as follows:

(oa(X) xvx) + (n - IXI) x v(x)
XEX 

IXE

Consider Figure 2.2, with v(x) indicated by the lengths of the bars shown, for
G - G
X! X2 ,.,.,X n .

x4

XC

•G

X(;

Figure 2.2a Linear Objective Function

X5
X3

Figure 2.2b. Discounted Linear Objective Function



= accumulated cost after I X I = 3
= cost of adding x4

The shaded area in Figure 2.2a indicated the magnitude of o0(X3), while the

shaded area of Figure 2.2b indicates the magnitude of aod(X ). We accompany the

new objective function with a modified greedy algorithm we call the greedy

algorithm with discounting, shown in figure 2.3.

Denote the element 3M which terminates this algorithm as XD.

Lemma 2.2. XD == XG.

Proof: We perform simple induction on the size of the set X. At initialization, X =

6, and v(x) = r(x) for all x E E. Hence Step 1 in each algorithm is identical. Suppose

that we now have generated the set Xc E=- Musing the standard greedy algorithm.

We compare each element in the set {y:X 'UI{y }  E M} to determine which has

smallest weight, and dcclare the chosen element x,+1. Because .M has propcrtv 2.1, we

know

{y:x> U e I (XY:X' [, -. ]JEE:).

Thus, we are guaranteed that

r(x, ) = v(x,'.1 -(r(x')+ r(,')+...+r(x'))

z,'(, 1) - v,(x,

which is the minimum of the set {Z'(y) - v(x,'):x,' U{Y} r M}. Thus, xG: will be

selected by the greedy algorithm with discounting at stage i + 1.

Thus, we are assured that is selected by the greedy algorithm with

discounting at each stage j = 1, 2, ..., n.

Theorem 2.3. Let XD be the discounted linear objective function for an arbitrary,

nonnegative weight function v, then
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Xv = argminy6,, co,(Y)

if and only if f is a matroid.

Proof: Since the greedy algorithm with discounting always makes the same

selections as the standard greedy algorithm, this theorem follows directly from

lemma 2.1.

0. Initialize X = pr(x) = v(x)Vx e E, co= 0

1. x - argminy x { }e r(y)
2. oad <-- cod + [r(x)(ni-I Xj) ]

3. For eachyE-X

r(y) (- r(y) - r(x)

4. X <-- Xu{x}

5. if X e f3M then go to step I

6. stop

Figure 2.3. The Greedy Algorithm with Discounting

Example 1 One of the more interesting weighted matroid structures is the

transversal matroid. Let (S, T, A) be a bipartite graph with source node set S,

destination node set T, and arc set A connecl;ng members of S to members of T. For

example, let (S T, A) be as given in Figure 2.4. Each node t in T has a specified cost

v(t). The matroid minimization problem is to find the minimum weight subset of T

such that each member of this subset can be matched with a unique element in S,

and each element of S has a member of T matched to it. This assignment is called a

transversal of the bipartite graph. Such a problem might arise where each element

of T is a task requiring specialized training and each member of S is a person. An arc

7



exists between pr S and tr T if and only if person p is qualified to undertake the

training for task t. {v(t):t E T} is the set of training costs. Note that training costs do

not vary from person to person. The goal is to employ the members of S the greatest

extent possible while minimizing the training budget. See Lawler to verify

properties 2.1 and 2.2 for the transversal matroid is a matroid.

The bases for the transversal matroid are given in Table 2.1 below. All baF;c

elements have cardinality 4. Even if there existed no complete matching from S to

T, each element of 0,d would still be of the same cardinality.

We show the execution sequence of the standard and the discounted greedy

algorithms in Tables 2.2 and 2.3 below. Note that the accumulated cost and the

terminating basic set are consistent with the values given in Table 2.1. Also note

that r(3) decreases below 0. This onlv happens because 3 is not addable to {4,61 or any

superset of {4,61.

1 74

Figure 2.4. Bipartite Graph with Node Weights

8 -m m



TABLE 2.1. THE BASIS OF THE TRANSVERSAL MATROID

Xe P Matching in S Cost

11,2,3,4) 1,3,2,4 62

(1,2,3,5) 1,3,2,4 70

(1,2,4,51 1,2,3,4 65

11,2,4,61 1,3,4,2 69

(1,2,5,6) 1,3,4,2 77

{1,3,4,51 1,2,3,4 58

{1,4,5,6) 1,3,4,2 57

j2, 3, 4, 5) 3,2,1,4 57

(2,4,5,61 3,1,4,2 56

TABLE 2.2. STANDARD GREEDY ALGORITHM EXECUTION PATI I

STAGE i Xi )

o 0 0

1 (41 8

2 (4,61 20

3 14,5,6) 36

4 (2,4,5,6) 56

TABLE 2.3. GREEDY ALGORITHM WITH DISCOUNTING EXECUTION PATH

STAGE i X, r__ _ d

1 3 4 5 6

{ 0 21 20 13 8 16 12 0

1 {41 13 12 5 - 8 4 32

2 14, 6 t} 8 1 - 4 - 44

3 (4,5,61 5 4 -3 - - 52

4 12,4,5,61 1 -- 7 -56

We should note that the transversal matroid is not reducible to the graphic matroid

from wrich the minimum weight spanning tree problem arises. Thus, the results
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concerning transversal matroids with random arc weights we will present in the

next section are new to the literature.

3. MATROID MINIMIZATION WITH EXPONENTIAL ELEMENT WEIGHTS

Let {V(y):y - E} be a set of independent, exponentially distributed random

variables with arbitrary rates {;L(y):y c E}, and let Wd be the associated stochastic

discounted linear objective function.

We propose that a properly constructed Markov process will have the property

that

i) at each transition it will make transition from X u {x} with probability equal

to the probability that the greedy algorithm would choose x from X;

ii) the time between erntrv to state X and entry into state X u {x} is identically

distributed with the random quantity W(X u {x}) - W(X).

Once this is established, we will use the first-passage properties of the s ochastic

process from o. to some state in 011 to describe the stochastic properties of the greedy

algorithm and its solution. We now consider the case where our matroid is

randomly weighted.

Let Z be a Markov process with statespace Mf, absorbing states . and initial state

o. Define ,-(X) I ,(x). Let Q be the infinitesimal generator matri\ of Z,
x i

defined as

n-Il
OWN A (H)

QU H = 0 otherwise
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The fundamental result of this section is given as follows:

Theorem 3.1. For each X e /, let Px(t) ) P -Z(t= X1, then

i[w,(xG) ! tXC = X= P[Z(t) = x] = Px(t)

Note that XG is now a random set in PM
Proof. We use a sample path argument based on the current state of Z. Let

'r, z:2 ,-.-, r'. be the intertransition times of Z. At the outset, Z(O) = 0.

Wd (X3) = n minyrVy erX() expX (IY')

G
Once x, has been chosen, we have

r(x) = V(x) - V(x') - exp(A(x))

for each x E E - {xI }, where the distribution is established by the strong Markov

property. Thus, we have

W(XC)-_W(XG) ex ., Xx) .

Hence, we can inductively establish that

W(xl,)-W(X ) - exp X X-

Our theorem follows.

To address questions of interest regarding the performance of a randomly

weighted matroid, we may use the cumulative joint distribution {PX(t),t > O,X E #,I

11



to derive probabilities of interest. We now present a series of corollaries to the

preceding theorem. The first result concerns the distribution of W(XG).

Modify the rate matrix Q by aggregating all the basic elements of M into a simple

absorbing state which we will label PM to created the rate matrix Q'. Let

QX"Bm =I(X n= - 1

Q .xY = Qx'Y; IXI n-1Q ,II = o1

QPM'PM -0.

Let Z' be the Markov process governed by the generator Q'.

Corollary 3.2.

P[W(XG)! t] = P[Z'(t) =

Let rx = Eltime until absorptionlZ'(0) = X). We can calculate E[W(XG)] by solving for

We can solve for E[ by solving for r, according to
1

. (H-- IH 1 : n - I
n-lxl h n-I

-+ r IXL=n- 2.n- 3,...,l
' (H) AH,{ff(H)

n (-H*)

This is the first step analysis result found in Heymann and Sobel [1982] adapted to

the process Z'. Note thatrpm = 0.

Often, one is not only interested in the value of W(Xc'). Sometimes we seek the

probability that a given state is the greedy choice or the probability that a given

12



element is a member of XG. The appropriate probability weight function can be

easily fcund using the embedded Markov chain of Z'.

For each X r= Mand x such that X u{x} - M let

PXXuAx] = L(x) / ;L(X).

Let z be the discrete time Markov chain governed by transition probability

matrix P, with z0 = 0.

Corollary 3.3. For each X E PM

P[XG = X] = P[z, = X].

Proof: We simply take the ratio of Qx,x ,, and Qxx. Note that the factor of n - X

cancels.

Corollary 3.4. For x c E, define Px as

P[x e XC] = P[x r z] = p,

This last result is concerned with the probability that a given element in the set E is

a member of the optimal basic element. px is often called the criticality index of x,

and is important because it tells us the extent to which the performance of the

system depends on the random variable V(x).

There exist specific applications which require specialized performance

measures such as E[O(XC)x X], P[X XyE XC']; or P[(O(Xc)< t*[' e X"] for

some t*>O. Each of these measures may be derived using standard Markov process

analysis techniques. For further discussion of these techniques, see Bailey [19881.

Example 2. Returning to our task assignment example, suppose that the cost of

training for each task is now exponentially distributed with mean given in figure

2.4. The appropriate Markov process was constructed with nine absorbing states, 37

13



transient states, and upper triangular structur- Figures 3.1 and 3.2 show the

distribution and density functions, resp., for the random variable W(XG).

l.0*

0.8

r

a
t

-otal -ra'n a Cost

Figure 3.1 The Distribution of W(X0 )
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C' C 2

0

t

2C 4C 6c 8, I2C

ota' -rannrc Cost

Figure 3.2. The Density of W(X0 )

Using the system of equations given above, we calculated the expected value of

W(XG) as 35.1256. Note that this value is about 57% of the deterministic value of

W(X) given in Section 2 even though the individual expected costs in both cases

are equal. This reduction in expected training costs becomes more dramatic as the

size of the problem increases. In Table 3.1, we give the probability of absorption for

each basic element, and we show the criticality index for each task in Figure 3.3. The

criticality index in this context gives the probability that a given task is undertaken

under the minimum training cost policy.

15



TABLE 3.1. PROBABILITY OF OPTIMALITY FOR EACH BASIC ELEMENT

P[X G = X] X

0.11124010 (1,2,3,4)

0.03319019 11,2,3,5)
0.04504579 (1, 2,4, 5)
0.13018686 (1,2,4,6)

0.15166172 (1,3,4,5)

0.16070031 11, 4, 5, 6)
0.15705219 (2, 3, 4, 51
0.19037344 12,4,5,6)

C,

C C

10

C

1 2 3 4 5 6

Task

Figure 3.3. Probability each Task is Undertaken

Our analysis shows that task 4 is almost always undertaken (P4=95%), task 5 is

usually undertaken (p3=74%), and the pairs I and 2, and 3 and 6 are nearly equally

likely to be undertaken. The deterministic solution, 12,4,5,6), is most likely to be the

optimal solution but its probability is only 19%.
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4.0 BOUNDS FOR NONEXPONENTIALLY DISTRIBUTED WEIGHTS

This section presents two methods for using exponentially weighted matroids to

provide performance bounds for randomly weighted matroids. In the first case, we

consider the general class of NBUE weights. We provide a simple bound on the

expected weight of the optimal basic element based on a concavity argument. The

second bound applies to weight distributions which have positive bounded hazard

rate function on the nonnegative haifline. We develop bounds in distribution for

the weight of the optimal basic element, and give formulae which quantify the

worst-case tightness of the bounds. In both cases, we illustrate our methodology

using the transversal matroid.

4.1 NBUE Distributions and Concave Bounds

The deterministic objective function cod is concave in each of its arguments.

This fact allows us to state that the random variable Wd(M), the weight of the

minimum weight basic element when element weights are exponential, establishes

a concave lower bound on Wd(NBUE), where element weights have NBUE

distributions with the same means as the exponentials. The power of this statement

is fullv revealed in the inequality

(ad -- E[Wd(NBUE)] > E[Wd(M)],

see Stoyan [1983].

Example 3. We used our small example of the transversal matroid to compare

results using two interesting families of NBUE distributions, the uniform and the

Weibull families.
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Our experiment involved selecting distributions ranging from those with very

low coefficient of variation (0.013) to coefficients of variation near unity. We

expected the performance to be close to that of the exponential system when the

coefficients were high, and nearly deterministic when they were low. We felt that,

even for this very small example, this transition would be interesting to observe.

For the uniform distributions we parameterized distributions using R as follows

1
f(Z) =-2Rv(x) I,(,)- Rv(x), v(x) + Rv(x)l

for each x- E. We chose values of 0.2, 0.5, and 1.0 for R. For the Weibull

distribution, given as

f(z) = azD-Iexp[-czz] 1[0, I(z),

we chose P = 1.5, 2, 5, and 10, and adjusted the rate parameter a so that the random

weights had expected values equal to the deterministic values of v(x) given in the

example in Section 2. For each distribution, we generated 1000 problem instances

and generated a data set of objective function values and criticality information. We

used this data to verify the above inequality. Figure 4.1 shows the relationship of

the expected values of the optimal tasking cost using the distributions given above.

This figure verifies the above inequality for our small example.

18
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Figure 4.1a. Expected Value Bounds for Uniform Task Values

In Figure 4.2, we constructed quantile-quantile plots for the uniform and Weibull

distributions. The 45 degree line represents the exponential density and the

horizontal line represents the deterministic value of w=56. As we expect, these two

lines nicely sandwich the distribution of Wd for each family.
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Figure 4.1b. Expected Value Bounds for Weibull Task Values

14C CONTRASTING

12C -.. .- - QUANTILES

•..................- - 7 .uir ...

2C 4C 60 80 100 120 140 16C
EXPONENTIAL

OLUANTILES

Figure 4.2a. Q-Q plot for uniform vs. exponential weights. The quantile-quantile
curves progress from the 45 degree line as R decreases. The deterministic system is

represented by the horizontal line at 56.

20



160140 -
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120- . ....---- .--- QUANTILES

- Y X

80. EF-A 1,

PF-A =
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42 C C 8 C 1CC 12C 14c, IV,

EXPONENTIAL
QUANTILES

Figure 4.2b. Q-Q plot for Weibull vs. exponential weights. The curves progress
from the 45 degree line as 3 increases. The deterministic system is represented by

the horizontal line at 56.

Finally, we computed the criticality indices for the two distributional families,

and present these results as bar graphs in Figure 4.3. This figure leads to some

interesting insights about the bounding behavior of criticality indices. It seems that

the very critical tasks, tasks four and five, have their criticality indices bounded from

below by the exponential case. A similar behavior is shared by task six, though it is

no more critical than tasks one or two. Tasks one through three exhibit very little

systematic behavior. e

In conclusion, we have shown that the concave bounds provided by the

exponential and deterministic cases hold, and that other comparisons of NBUE

systems to exponential ones display interesting structures and relationships. We

21



more precise statements about behavior as the system grows large. Other analyses,

such as that of Frieze [19851, are more applicable in large-scale systems. Finally, we

should note that all of the above bounding arguments hold when each of the

element weights comes from a distinct NBUE family. Thus, for any combination of

IFR, IFRA, NBU and NBUE weights, we still have bounds, and the bounds probably

behave in the manner we have described with respect to coefficient of variation.

7

TASK

Figure 4.3a. Criticality indices from uniform task values
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KX

2

Figure 4.3b. Criticality indices from Weibull task values

4.2 Weights with Positive, Bounded Hazard Functions

In this section, we consider weights which are nearly exponential, having

bounded hazard functions. Let (V(X) F:x e E) be a sot of weights, and define the

uM;dia hazard rate function

f,(t)

r.nt) = I -F,( )

w ,here f, is the distributior. corresponding to the distribution function F, .Suppose

that for each xc- E, we have superior and inferior hazard bounds, XA-(x) and Ai(x), such

that for all t > 0)

23



t

tASWx j rxsds .5 t, ix),

this model of near exponentiality being attributable to Glazebrook [1987]. Barring

the case of A(x) = 0, this guarantees that V(x) has nontrivial support on [0,o]. Define

exponential weights Vsx) and Vi(x), with rates As(x) and ,i(x), resp., with which we

can bound V(x) in distribution

V(x) - V(x) -d VS(x),

see B.arlow and Proschan [1981]. Let W(V), W(Vi), and W(Vs) be the (random)

weight of the minimum weight basis element under weights [V(x):-eE}, [Vi(x),xE)E,

and [V(x:xeEl, resp.

Theorem 4.1: W(V') d W(V) -d W(V s)

Proof: We will show the inequality W(V) !<d W(V s) holds, leaving the other

inequality to the reader. Let us impose an arbitrary numbering on the elements of E,

so that E = e,, .. . e E 1 , and define random weight function Vk as {Vs(ei), V(e2),

.'. . VV(Ck, ), 1V(Ck-2) ... , V(elEl)}. w, the deterministic linear objective function,

is monotone increasing in each argument.

We have

W(V) _% W(VI),

a result of monotonicity of w in V(el). By a simple inductive argument, we establish

that W(Vk) <_1 W(Vk.l) for k = 1, 2 ... , IEl - 1. Transitivity gives us that W(V) -d

W(VE ) W(VS).
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Let x e E. We consider the difference Vs(x) - V(x), where both these random

variabics arise from the same element of the sample space, thus they are completly

dependent. Thus, if Ai(x) = As(x) + e(x), we have that

Vi(x) = V5(x) • S(X)
,ls(x)+--x)

using the method of matched realizations. Hence we calculate the probability

distribution of the difference of these two weights as

P[V'(x) - Vi(x) t]

=V((x) -vsx > t1

A=(x)+e(x)

exp(-tArx)(,A(x)+a"(x))/Erx)). (4.2.1)

We will use this result to bound P[(W(Vs) - W(V) _ t], using the sojourn times on

the sample path to each basic element.

Let X e P be an (ordered) string of elements of E. Conditioned on X = XG, we can

use the sample path of the Markov processes XS(t) and Xi(t) based on (Vs(x): x e El

and (Vi(t): x e E} with matched realizations to bound the distribution of W(Vs) -

W(V). Let Ts be the sojourn time of Xs(t) in state Xj, then by theorem 3.1,

t 1 exp t ASW,

By equation (4.2.1), we have that
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I{T;-T; tjIX=XG] = exp t k();sx+()

Thus, as W(Vs) - W(Vi) = (T,'- T1 ) + ( - T) + ... + (T -1 T-) we get the following

bound.

Lemma 4.2. Let X e P and T,(X) = xE (x)(n-j)
xeA(X)) 6x) (n-j)

If, as we expect, (r/X).j=O, 1, 2. n-1) is a set of n distinct reals, then

,n-1

PtVV(Vs) - W(Vi) :t?= , P[X=XG]( a,(exp(-t,(X)) (4.2.2)

n-1

Smax I aj(X) exp(-t(X))
X~/3 ;=o

where a,(X) -).(x)
k= (wix- A (xi))

Proof: Conditioned on X = XG, W(V-) - W(V i) is the convolution of n independent

exponential random variables with distinct rates (rj(X):j = 0, 1, 2 ..., n-Il Hence

W(V ) - W(V is hyperexponential with the rates given by this set. The form given

in (4.2.3) is found in Trevedi [1982].

The bound given in (4.2.2) is very sharp, and cannot be improved upon without

knowledge of P[X=XG]. A looser bound which does not require exact criticality data

is given below. Suppose that

m .(x)(A;;.(x) + Ex))x* argmin-
xeE dx)
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Then, by 4.2.1, Pt Vs(x) - Vi(x) 2! ti P[Vs(x*) - Vi(x*) - t] for every x e E. Let

A1 = minxE, /x I= A(XW

Theorem 4.3:

P[(W(VS) - W(Vi) :?t]

n bept[A'x*( X(x*) +ex) A

TI Ak(n-j) jnk
,4=)

Proof: Let XE e3 then r,(x) :?A, + (x*) -)

~'~~(~sx'~+ c(x*)) Ai

ex*) 01-j),

Thus, by rescaling the transition sojourns by c-(x*)I. s(x*)(AlX~*)+e-(x*))

we deriv-e

;O " - W,(Vi) E2(X)X*) + I x Gj

n As(x*)AlS(X*)+cdv*)) A
i EJb1 X1 *C)k (n-j)j

where n Ak(n-j)
wher b1 X1) H Ak(n-j) -Aj(n-k)

k=7j
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and the theorem result follows by replacing x* and X* to bound the conditional

probability for each X e 3.

Example 4. We explored the behavior of the bounds by varying the value of (x).

Using the same parameters (A(x): x e E) as those of example 2, we varied ,.S(x) and

lix) such that (I - p)X(x) = As(x) and (1 + p)4x) = "'(x) for p = 0.1, 0.2, and 0.5. The

cumulative probability functions were plotted, and are presented as figure 4.4.

The results show a healthy robustness with respect to mild departures from

exponentiality. The widest pair of curves, corresponding to p = 0.5, show the

distribution for the case where Xi(x) - Xs(x) = 1(x), thus we have a 100% gap between

lower and upper bounds on the hazard function. Even in this extremely weak

bounding of the hazard function, we get useful results about the weight of the

minimum weight basic element.
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Figure 4.4. Bounds for Xs(x) = (1 - p).(x), X'(x) = (1 + p)k(x) for p = 01, 0.2, and 0.5.

The cdf of the original problem in the bold cu,e marked 0.0.

We also plotted the behavior of the bound presented in theorem 4.3, the result is

shown in figure 4.5. The bounding behavior is very strong for this problem, so

strong that we are virtually guaranteed that the value of W(V s ) - W(V i) is less than

0.5 in all cases, even when the bounds on the hazard function r(x) are very loose.

This behavior arises due to the minimization mechanism underlying W. Our

intuition tells us that, as the problem structure becomes larger, the values of Aj, j =

0, 1, ..., n - 1, will become laige, causing the resulting bound to be increasingly sharp.
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5. CONCLUSIONS AND EXTENSIONS

We have presented a method for finding performance measures of any

rn- imized weighted matroid optimization problem where the ground set elements

have independent, exponentially distributed weights. Further, we have shown the

exponential case to be useful in providing bounds on random matroids with nearly

exponential weights, and NBUE weights.

Optimization problems which are amenable to the work in this paper include

the semimatching problem, the minimum weight spanning tree problem, the job

sequencing problem, the flow matrix synthesis problem, and the experimental
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design problem. The details of each of these problems can be found in Chapter Eight

of Lawler.

Each of these optimization problems must be considered well-solved for the case

of exponential element weights, the solution being found in the present paper. We

have further provided a general bounding scheme for any choice or mixture of

NBUE distributions for ground set element weights.

Several works concerning minimum weight spanning trees present results

which are asymptotic in the number of nodes in the graph examined, these results

holding for generally distributed weights. The only constraint is that these

distributions must be continuous from the right at V(x)=O. Among these papers are

Frieze (19851, and Mamer and Jain [19881. These papers make use of the fact that, as

I(x:XU{x}e 9}M§I-.oo, we have min V(x) is approximately exponentially distributed.
X:X~{XJEO

Similar asymptotics could be performed on the general matroid problem with

generally distributed element weights. Elegant results such as those given by Frieze

are thus obtainable using the Markov process presented in this paper combined with

some (usually complex) counting arguments.

The results presented in this paper lend further evidence supporting the

usefulness of Markov processes as greedy minimization processes in combinatorial

optimization problems with random weights. While methods of deterministic

parametric analysis commonly used in optimization work address the case where an

individual weight is allowed to vary, these methods do not address the larger

problem, that the optimal objective function value is a complex function of all

weights. The methods given in this paper are clearly more difficult to perform than

the usual parametric analysis, however, we have demonstrated that the parametric

methods will yield inaccurate results.
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